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bstract

“Metabonomics” method requires the development of rapid, advanced analytical tools and GC will play an important role for its special
dvantage. In this study we show the application of GC-based metabonomics to investigate the control and type 2 diabetes (DM2) patients by
rinary organic acids metabolic profile. After peak matching, multivariate statistical analysis methods: principal components analysis (PCA)

nd partial least squares-discriminant analysis (PLS-DA) were used. The results showed that there was a relationship between organic acids
etabolic profiles and DM2, and PLS-DA can distinguish the DM2 patients from the control. Five organic acids as potential biomarkers were

dentified.
2006 Elsevier B.V. All rights reserved.

2 dia

r
a
w
h
a
fi
t
w
y
g

d
h
t
w
a

eywords: Metabonomics; GC; Organic acids; Peak matching algorithm; Type

. Introduction

In the last decade “metabonomics” has demonstrated enor-
ous potential in furthering the understanding of, for example,

isease processes, toxicological mechanism, and biomarker dis-
overy [1,2]. Metabonomics is a holistic approach for measuring
ime-related biochemical responses in key intermediary bio-
hemical pathways as a result of physiological, pathological, or
nterventional genetic events, and this has been achieved prin-
ipally through the use of 1H NMR spectroscopy on biofluids
uch as urine or plasma [3,4].

However, “metabonomics” method requires the development
f rapid, advanced analytical tools to comprehensively pro-
le biofluid metabolites. The key point of the methodology

s to have in disposition a generic analytical method for rapid
iofluid sample profiling together with a chemometric method

or data evaluation. As NMR spectroscopy is non-destructive,
ot selective and high throughput it has widely been used for
etabonomics. But NMR has its drawbacks: poor sensitivity and
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esolution. Chromatography has been used mainly in biofluid
nalysis, especially for target component analysis and not for
hole sample profiling combined with chemometrics [5–8]. The
igh separation power and the ability to achieve high sensitivity
re strong incentives for the consideration of its use in biofluid
ngerprinting as well. So chromatography would provide addi-

ional and complementary information that cannot be achieved
ith NMR [9]. Capillary GC provides the highly sensitive anal-
ses required for multivariate statistical processing and has a
reater chance to find biomarkers of disease or toxicity.

Type 2 diabetes (DM2) was a typical metabolism disorder
isease with the very high frequency of 1.5–2.5% in the Western
emisphere [10]. Some of the changes in the concentrations of
he metabolites are detectable in blood serum and in urine even
hen the diabetic patients are well controlled by therapy. These

lterations are therefore inherently associated with the disease
10]. GC analysis has revealed a number of pathophysiological
hanges to accompany diabetes mellitus.

In order to reduce the complexity of biofluid GC data

nd facilitate analysis, automatic data-reduction followed by
hemometric methods, for example, principal components
nalysis (PCA) and partial least squares-discriminant analy-
is (PLS-DA), can be applied. Herein, an efficient GC-based
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etabonomic approach to understand pathophysiological pro-
ess has been developed; FID was used for the quantitative
nalysis of the profiling, and MS for the qualitative analysis.

metabonomic strategy including peak matching algorithm
as been applied to investigate whether there is a relationship
etween the concentration of organic acids and DM2, then to
istinguish the DM2 patients from the control and to discover
otential biomarkers.

. Experimental

.1. Sample collection and preparation

Urine samples were collected from 26 healthy adults and 28
atients with DM2. The age range was 28–63 years (43 ± 15,
6 ± 17, respectively) and roughly age-matched. All patients
ere from the Second Affiliated Hospital of Dalian Medical
niversity (Dalian, China) with the fasting plasma glucose con-

entration above 7.0 mmol/L. The patients were enrolled into the
tudy via “informed consent”. Samples were stored at −20 ◦C
ntil assayed.

Urine samples were individually processed for organic acid
nalysis. The first step is the preparation of SPE column: the
AX column was washed successively with 2 mL methanol,
mL water, 2 mL phosphate buffer at pH 7 (0.336 mol/L
otassium dihydrogenphosphate and 0.665 mol/L disodium
ydrogenphosphate), and finally 2 mL of diluted phosphate
uffer at pH 7 (0.013 mol/L potassium dihydrogenphosphate and
.020 mol/L sodium hydrogenphosphate). After addition of fer-
lic acid as internal standard (I.S) at 50 �g/L, an aliquot (2 mL)
f centrifuged urine was passed through the cartridge. The car-
ridge was dried by sucking air through them and elution of
he adsorbed organic acids was performed with 1.5 mL of aque-
us HCl in methanol (1 mL of concentrated HCl adjusted with
ethanol to 25 mL).
Each sample was dried by rotary evaporator and placed

ith 140 �L of 6:1 N-(tert-butyldimethylsilyl)-N-methyltri-
uoroacetamide (MTBSTFA)/N,N-dimethylformamide (DMF).
he vial was airproof and heated at 50 ◦C for 1 h, then cooled to

oom temperature before being placed on the autosampler vial
or GC analysis.

.2. GC–FID and GC–MS

After derivatized, the extracts were analyzed using an Agilent
890N gas chromatograph equipped with FID. The column used
as a DB 5 ms (30 m × 0.25 mm × 0.25 �m) (J&W, USA). One
icroliter sample was injected in the split mode (30:1). The car-

ier gas was He with the flow rate 30 cm/min. The split/splitless
njection port was at 280 ◦C. The oven temperature was pro-
rammed: initially 40 ◦C, then ramped to 260 ◦C at 2.5 ◦C/min,
nd held for 2 min.

The mass (MS) detector was used for qualitative analysis.

ll mass spectra were acquired in the electron impact (EI)
ode at 70 eV and scanned in the range of 40–500 amu. The

on source and the interface temperatures are 200 and 290 ◦C,
espectively.
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.3. Processing and pattern recognition of GC
hromatogram data

.3.1. Statistical analysis
For quantitative analysis, all of the peaks exceeding a signal-

o-noise (S/N) of 10 were selected. Their relative peak areas
RPA) to the internal standard were evaluated by multivariate
ata analysis using the software program SIMCA-P (Umea,
weden). The data were subjected to PCA and PLS-DA.

.3.2. Principal components analysis (PCA)
In PCA the multivariate data set is projected down to a

ower dimensional plane formed by the principal components
PCs) which approximate the data as well as possible in the
east square sense. Principal components analysis (PCA) is a
ilinear decomposition method used for overviewing ‘cluster’
ithin multivariate data. The GC data (X) were represented in
-dimensional space (where K is equal to the number of chemi-
al shift regions) and reduced to a few principal components (or
atent variables) which described the maximum variation within
he data, independent of any knowledge of class membership.
he principal components were displayed as a set of ‘scores’ (t)

hat highlighted clustering or presence of outliers and a set of
loading” (p) that described the influence of input variables on t.

The PCs are the uncorrelated (orthogonal) variables, obtained
y multiplying the original correlated variables with the eigen-
ector (loadings or weightings). Thus, the PCs weighted linear
ombinations of the original variables. PC provides informa-
ion on the most meaningful parameters, which describe whole
ata set affording data reduction with minimum loss of origi-
al information [11,12]. It is a powerful technique for pattern
ecognition that attempts to explain the variance of the large set
f inter-correlated variables and transforming into a smaller set
f independent (uncorrelated) variables (principal components).
CA performed on correlation matrix of individually rearranged
ata explains the structure of the underlying data set. The cor-
elation coefficient matrix measures how well the variance of
ach constituent can be explained by relationship with each of
he others [13].

.3.3. Partial least square (PLS)
PLS can be described as the regression extension of PCA.

nstead of describing the maximum variation in the measured
ata (X), which is the case for PCA, PLS attempts to derive latent
ariables, analogues to PCs, which maximize the co-variation
etween the measured data (X) and the response variable (Y)
egressed against.

Partial least squares-discriminant analysis (PLS-DA) which
iscriminates the known classes in calibration set is a special
orm of PLS modeling aims to find the variables and direc-
ions in multivariate space. In PLS-DA, an indicator Y matrix
f category variables is constructed which contains as many
olumns as there are known classes in the calibration set, i.e.,

ach class has a column in Y. Each class variable is assigned a
alue 1 or 0 depending into which class a subject belongs. In the
urrent work, PLS-DA was used to generate models that could
istinguish between the control and the DM2.
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ig. 1. A flow chart diagram of the peak matching algorithm and metabonomics
ata analysis.

. Results and discussion

Metabonomics is based on large amount of samples. So high
hroughput profiling requires the development of a GC method
llowing highly detailed fingerprinting of complex samples con-
aining a wide range of compounds. Compared with NMR, GC
as some problems to solve; the most significant one is the reten-
ion time shifting of chromatographic peaks due to phenomena
elated to the instrument itself as well as to the chemical inter-
ctions between different samples and the instrument. So a peak
atching method should be developed to solve the problem of

ime shift.

.1. Peak matching algorithm

The flow chart is given in Fig. 1. Firstly, a target chro-
atogram was selected (Fig. 2) that is typical of the whole set

f compound analyses. An alignment target chromatogram must
e chosen carefully. It is important for a chromatographic peak
n the target chromatogram to be located as close as possible to

he center of the distribution of peak positions. If a target with
eaks on the edge of the distributions of peak locations (i.e., a
hromatogram that is significantly shifted relative to the others
n the set) is chosen, the peak mismatch will increase [14].

a
o
m
a

Fig. 2. A target chromatogram from a typical anal
. B 850 (2007) 236–240

Secondly, all of the peaks that can be detected exceeding a
ignal-to-noise (S/N) of 10 were identified in all of the chro-
atograms by using the software from GC instrument, 195

eaks with the S/N > 10 were found in the target chromatogram
Fig. 2). All other chromatograms were then matched against
his peak list of target chromatogram.

The main intention of the algorithm is to define a series of
nternal marker peaks firstly which could be easily identified by
electing a wider retention window. A chromatogram was then
ivided into several zones, which were residing between the
nternal marker peaks. Compared with other peaks, 10#, 23#,
3#, 54#, 74#, 102#, 133# and 158# which were higher than the
thers and occurred in most of the other sample chromatograms
ere selected as the internal marker peaks. The internal standard
as also added to the internal marker peak set and numbered as
7#. While the internal marker peaks’ retention values have been
ssigned to a series of pre-defined values, all peaks’ retention
alues were scaled based on the adjusted retention index (ari) that
as similar to Kovats retention index and calculated according

o Eq. (1):

arii = tri − trj
trj+1 − trj

× (ARIj+1 − ARIj) + ARIj

trj < ti ≤ trj+1 (1)

here arii is the adjusted retention index of the peak i (i
s the peak no., equals to 1, 2, 3, . . ., 195); tri and trj are
he retention time of peaks i and j, respectively; tr0 = 0. j
j = 0, . . ., C) is the number of internal marker peaks, in this
tudy, C is equal to 9. ARIj is the internal marker peak’s
djusted retention index, equal to j × 100. Based on Eq. (1),
he ari values of the peaks would be very stable in different
hromatograms.

Thirdly, the alignment was carried out on the basis of the ari
alue. The sample and the target chromatograms are compared
y stepping through each of the peaks in the target chromatogram
nd finding the sample chromatogram peak that most closely
atches it in the ari value. If the closest match is within a

elected distance from the ari of the target peak, then the peaks

re matched. The matching window of the ari can be adjusted
n the basis of the distribution density of the peaks in the chro-
atograms. The region crowded with more target peaks was

ssigned to a smaller ari difference. This allowed the peaks

ysis of the whole set of compound analyses.
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o be correctly aligned and transformed into the data array for
ultivariate statistical analysis.

.2. Multivariate analysis

The purpose of applying multivariate statistical methods to
he analysis of organic acids data was to identify the profil-
ng characteristic of DM2 comparing with control and discover
otential biomarkers.

Here, there were 54 samples from two classes (the control and
he DM2) including 195 variables (chromatographic peak no.).

n the basis of their relative peak areas to the internal standard,

he PCA analysis of urinary organic acids from the control and
M2 was carried out. As overlapping happened (Fig. 3a), the
M2 patients could not be separated from the controls.

ig. 3. (a) Score plot from principal component analysis (PCA). (b) Score plot
rom Partial least squares-discriminant analysis (PLS-DA) based on relative
mounts of 195 constituents of urine samples ((black �) the DM2 patient; (red
) the control). (c) PLS-DA loadings plot.
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To improve the classification of the DM2 and the control, the
LS-DA was used. In PLS-DA the data set is modeled in way
imilar to PCA, but in combination with a discriminant analy-
is. The objective of PLS-DA is to find a model that separates
discriminates) the X data according to above described treat-
ents as well as possible. Therefore an additional Y matrix was
ade up as a dummy variable, containing the values 1 and 0 for

ach treatment, respectively. The number of significant princi-
al components was determined by cross-validation. It can be
ound that two groups according to the treatments were fairly
iscriminated. Nearly all samples were clearly separated from
he other class; the DM2 patients appeared in the up-right zone,
nd the control in the area of the down-left zone (Fig. 3b).

The PCA shows a dissatisfactory separation of the two
lasses, but the separation can be greatly improved by the use
f PLS-DA. The reason is that PCA is a technique that finds
lower dimensional space capturing the maximum amount of

ariance in an input data matrix, X, without losing any useful
nformation. PLS is a similar approach to PCA except it reduces
he dimension of both input and output data matrices, X and Y,
y capturing the maximum amount of covariance between X and
, to best predict Y.

.3. Potential biomarkers

The PLS-DA loading plot given in Fig. 3c shows which vari-
bles contribute strongly to the separation of classes. From the
oading, we can know potential biomarkers that were the furthest
ne from the origin in the loading plot.

The structures of potential biomarkers were identified by
ass spectrometry. Table 1 gives their molecular formula and

he quantitative analysis result. The compounds detected are
ostly organic acids and they are derivated to tert-bu-TMS

erivatives. CI and SIM scan modes by using m/z = 73 and 115
ere combined, the data were then submitted to a NIST library

earch (NIST147, NIST27) which resulted in a hit for tert-bu-
MS-derivatized organic acids (similarity more than 85%). The
greement between the exact mass measurement and library
earch results is excellent and is supported by the CI data.

The potential biomarkers identified are mostly organic acids.
rganic acids play an important role in nearly all the metabolic
rocesses and take part in many different physiological and
athophysiological functions such as nutrient deficiencies, mito-
hondrial energy production, intestinal dysbiosis, free radical
verload, and so on [15]. And they are also considered as
iomarkers for many diseases, such as the inborn errors of
rganic acidurias, diabetes, central nervous system diseases, etc.
16–18]. Four biomarkers identified are all short-chain organic
cids interrelated with the metabolic disorder as reported before
19,20]. And these newly found biomarkers probably imply the
nderlying metabolic disorder of the patients, or the trends to
cidemia. This information provides important clues for the
nderstanding and monitoring of the disease. For its high sen-

itivity, selectivity, and identification capability of GC–MS, the
rganic acid profiling method we established can further be used
or the treatment of type 2 diabetes to prevent the metabolic dis-
rders. It is very important that early and accurate diagnosis of
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Table 1
Identification result of the potential biomarkers

Compounds Molecular formula Average (I.S) T-test

DM2 Control

Maleic acid, dimethyl ester C6H8O4 2.80E−5 8.20E−5 0.03
Oxyl acetic acid C2H4O3 4.31E−5 1.67E−4 0.02
4-Aminobenzoic acid C7H7NO2 4.24E−4 9.78E−5 0.0008
2

m
p
w

4

w
c
f
g
a
d
i
m
g
c
i
S
f
m
b
d
p
w

A

2
N
I
(

R

[
[

[

[
[

[
[

[

[18] S. Kolker, E. Mayatepek, G.F. Hoffmann, Neuropediatrics 33 (5) (2002)
,5-Bisoxy-benzeneacetic acid C8H8O4

etabolic disorders is made. The treatments of these disorders
erhaps are simple, yet when undiagnosed and untreated, they
ill result in serious syndrome or even worse.

. Conclusions

Metabonomics is now recognized as an independently and
idely used technique for evaluating the toxicity of drug-

andidate compounds, deriving new biochemically based assays
or disease diagnosis, understanding the relationships between
ene function and metabolic control in health and disease,
nd identifying combination biomarkers for disease. We have
emonstrated the utility of GC for urinary metabonomics stud-
es after sample preparation. The results have shown that peak

atching of the spectra followed by multivariate techniques is an
ood method for screening DM2 biomarkers. One of the signifi-
ant advantages using GC–MS is that the interesting compounds
n the loading plot can be identified based on the NIST database.
o we can allege that GC will play an important role in the
uture metabonomics research. It should be emphasized that the
ain aim of this study is to develop a peak matching algorithm

ased on GC and to apply the method to the DM2 biomarker
iscovery for distinguishing healthy adult controls from DM2
atients, the patients with other non-DM2 metabolic disorders
ill be included in the future.
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